Roth's Theorem in the Piatetski-Shapiro primes
Abstract
Let $\mathbf{P}$ denote the set of prime numbers and, for an appropriate function $h$, define a set $\mathbf{P}_{h}=\{p\in\mathbf{P}: \exists_{n\in\mathbb{N}}\ p=\lfloor h(n)\rfloor\}$. The aim of this paper is to show that every subset of $\mathbf{P}_{h}$ having positive relative upper density contains a nontrivial three-term arithmetic progression. In particular the set of Piatetski--Shapiro primes of fixed type $71/72<\gamma<1$, i.e. $\{p\in\mathbf{P}: \exists_{n\in\mathbb{N}}\ p=\lfloor n^{1/\gamma}\rfloor\}$ has this feature. We show this by proving the counterpart of Bourgain--Green's restriction theorem for the set $\mathbf{P}_{h}$.
- Publication:
-
arXiv e-prints
- Pub Date:
- April 2013
- DOI:
- 10.48550/arXiv.1305.0043
- arXiv:
- arXiv:1305.0043
- Bibcode:
- 2013arXiv1305.0043M
- Keywords:
-
- Mathematics - Classical Analysis and ODEs;
- 11B25;
- 11P55;
- 42B15
- E-Print:
- Accepted for publication in Revista Matematica Iberoamericana