Mapping the complex kinematics of LL objects in the Orion nebula
Abstract
LL Orionis-type objects (LL objects) are hyperbolic bowshocks visible around young stars in the outer Orion nebula, many of which are also associated with curved, highly collimated jets. The bowshocks are clearly due to the supersonic interaction between an outflow from the young star and an environmental flow from the core of the nebula, but the exact nature of these flows has not yet been established. We present the first high-resolution optical spectra of two of these objects, LL 1 and LL 2, together with their associated Herbig-Haro (HH) jets, HH 888 and HH 505. We combine multiple long-slit echelle spectra in the Hα 6563 Å and [N ii] 6584 Å lines to produce velocity maps of the two objects at a resolution of 4text{arcsec} × 2text{arcsec} × 11 {km s^{-1}}. The gas motions within both stellar bowshocks are of rather low velocity (10-20 km s-1), but there are important differences between the two objects. LL 1 shows a high degree of symmetry, whereas LL 2 has very asymmetric kinematics that seem to follow velocity gradients in the surrounding nebula.
We also measure the line-of-sight velocity for multiple knots in the HH 888 and HH 505 jets, and combine our spectroscopy with new and existing proper-motion measurements to reconstruct the three-dimensional kinematics of the jets. The knot motions in both jets are very similar: both flows are inclined at 40° to 60° from the plane of the sky, with exclusively redshifted knots to the north and exclusively blueshifted knots to the south. In both cases, one also sees a deceleration along the length of the jets, from >200 km s-1 close to the respective stars down to <100 km s-1 farther out. The marked contrasts that we find between the kinematics of the jets and the kinematics of the stellar bowshocks are evidence that the two phenomena are not causally related. Regular patterns in the dynamic ages of the HH 505 knots imply periodic ejections on three different time-scales: 50, 12 and 4 yr. We use line ratios and photometry to measure electron densities and excitation/ionization conditions in the stellar bowshocks and jet knots. The LL 1 bowshock has a bright inner shell with density ≃3000 cm-3 (compared with a local nebula density of ≃1000 cm-3) and line ratios that are consistent with equilibrium photoionization models. The bowshock also has a fainter outer rim, where the line ratios show evidence of shock excitation. Many of the jet knots also show evidence for a shock contribution to their excitation and have densities from 1000 to 8000 cm-3. Based on observations obtained at the Observatorio Astronómico Nacional, San Pedro Mártir, Baja California, Mexico, which is operated by the Universidad Nacional Autónoma de México. Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the National Science Foundation. iraf is distributed by the National Optical Astronomy Observatories, which is operated by the Association of Universities for Research in Astronomy, Inc., under cooperative agreement with the National Science foundation. Velocities in the frame of the local standard of rest are obtained by subtracting 18.1 km s-1 from the heliocentric values. Traditionally, [O iii] is normalized by Hβ rather than Hα in order to minimize the effects of extinction. In our case, the extinction is known to be low (Section 6), so the main effect of using Hα instead is to shift the y-axis by the intrinsic Balmer decrement of ∼0.5 dex.- Publication:
-
Monthly Notices of the Royal Astronomical Society
- Pub Date:
- January 2013
- DOI:
- 10.1093/mnras/sts059
- Bibcode:
- 2013MNRAS.428..691H
- Keywords:
-
- techniques: spectroscopic;
- H ii regions;
- ISM: Herbig-Haro objects;
- ISM: individual objects: Orion nebula;
- ISM: jets and outflows