Origin of the tail in Green's functions in odd-dimensional space-times
Abstract
It is well known that the scalar field Green's function in odd dimensions has a tail, i.e. a non-zero support inside the light cone, which in turn implies that the Huygens' principle is violated. However, the reason behind this behavior is still not quite clear. In this paper we shed more light on the physical origin of the tail by regularizing the term which is usually ignored in the literature since it vanishes due to the action of the delta function. With this extra term the Green's function does not satisfy the source-free wave equation (in the region outside of the source). We show that this term corresponds to a charge imprinted on the light-cone shell. Unlike the vector field charge, a moving scalar field charge is not Lorentz invariant and is contracted by a
- Publication:
-
European Physical Journal Plus
- Pub Date:
- October 2013
- DOI:
- arXiv:
- arXiv:1309.2996
- Bibcode:
- 2013EPJP..128..122D
- Keywords:
-
- Huygens;
- Total Charge;
- Light Cone;
- Scalar Charge;
- Lorentz Contraction;
- High Energy Physics - Theory;
- General Relativity and Quantum Cosmology;
- High Energy Physics - Phenomenology
- E-Print:
- Published in Eur.Phys.J.Plus