The Lie algebra of type G2 is rational over its quotient by the adjoint action
Abstract
Let G be a split simple group of type G2 over a field k, and let g be its Lie algebra. Answering a question of J.-L. Colliot-Thélène, B. Kunyavskiĭ, V.L. Popov, and Z. Reichstein, we show that the function field k (g) is generated by algebraically independent elements over the field of adjoint invariants k(g) G.
- Publication:
-
Comptes Rendus Mathematique
- Pub Date:
- December 2013
- DOI:
- 10.1016/j.crma.2013.10.029
- arXiv:
- arXiv:1308.5940
- Bibcode:
- 2013CRMat.351..871A
- Keywords:
-
- Mathematics - Algebraic Geometry;
- Mathematics - Representation Theory;
- 14E08;
- 17B45;
- 14L30
- E-Print:
- 5 pages