Turbulent Disks are Never Stable: Fragmentation and Turbulence-promoted Planet Formation
Abstract
A fundamental assumption in our understanding of disks is that when the Toomre Q Gt 1, the disk is stable against fragmentation into self-gravitating objects (and so cannot form planets via direct collapse). But if disks are turbulent, this neglects a spectrum of stochastic density fluctuations that can produce rare, high-density mass concentrations. Here, we use a recently developed analytic framework to predict the statistics of these fluctuations, i.e., the rate of fragmentation and mass spectrum of fragments formed in a turbulent Keplerian disk. Turbulent disks are never completely stable: we calculate the (always finite) probability of forming self-gravitating structures via stochastic turbulent density fluctuations in such disks. Modest sub-sonic turbulence above Mach number {M}\sim 0.1 can produce a few stochastic fragmentation or "direct collapse" events over ~Myr timescales, even if Q Gt 1 and cooling is slow (t cool Gt t orbit). In transsonic turbulence this extends to Q ~ 100. We derive the true Q-criterion needed to suppress such events, which scales exponentially with Mach number. We specify to turbulence driven by magneto-rotational instability, convection, or spiral waves and derive equivalent criteria in terms of Q and the cooling time. Cooling times >~ 50 t dyn may be required to completely suppress fragmentation. These gravo-turbulent events produce mass spectra peaked near ~(Q M disk/M *)2 M disk (rocky-to-giant planet masses, increasing with distance from the star). We apply this to protoplanetary disk models and show that even minimum-mass solar nebulae could experience stochastic collapse events, provided a source of turbulence.
- Publication:
-
The Astrophysical Journal
- Pub Date:
- October 2013
- DOI:
- arXiv:
- arXiv:1301.2600
- Bibcode:
- 2013ApJ...776...48H
- Keywords:
-
- accretion;
- accretion disks;
- hydrodynamics;
- instabilities;
- planets and satellites: formation;
- protoplanetary disks;
- turbulence;
- Astrophysics - Earth and Planetary Astrophysics;
- Astrophysics - Cosmology and Nongalactic Astrophysics;
- Astrophysics - Astrophysics of Galaxies;
- Astrophysics - High Energy Astrophysical Phenomena;
- Astrophysics - Solar and Stellar Astrophysics
- E-Print:
- 15 pages, 5 figures (+appendix), accepted to ApJ (added clarifications and discussion to match accepted version)