Luminous and Variable Stars in M31 and M33. I. The Warm Hypergiants and Post-red Supergiant Evolution
Abstract
The progenitors of Type IIP supernovae (SNe) have an apparent upper limit to their initial masses of about 20 M ⊙, suggesting that the most massive red supergiants evolve to warmer temperatures before their terminal explosion. But very few post-red supergiants are known. We have identified a small group of luminous stars in M31 and M33 that are candidates for post-red supergiant evolution. These stars have A-F-type supergiant absorption line spectra and strong hydrogen emission. Their spectra are also distinguished by the Ca II triplet and [Ca II] doublet in emission formed in a low-density circumstellar environment. They all have significant near- and mid-infrared excess radiation due to free-free emission and thermal emission from dust. We estimate the amount of mass they have shed and discuss their wind parameters and mass loss rates, which range from a few × 10-6 to 10-4 M ⊙ yr-1. On an H-R diagram, these stars will overlap the region of the luminous blue variables (LBVs) at maximum light; however, the warm hypergiants are not LBVs. Their non-spherical winds are not optically thick, and they have not exhibited any significant variability. We suggest, however, that the warm hypergiants may be the progenitors of the "less luminous" LBVs such as R71 and even SN1987A.
Based on observations with the Multiple Mirror Telescope, a joint facility of the Smithsonian Institution and the University of Arizona and on observations obtained with the Large Binocular Telescope (LBT), an international collaboration among institutions in the United States, Italy, and Germany. LBT Corporation partners are: The University of Arizona on behalf of the Arizona University system; Istituto Nazionale di Astrofisica, Italy; LBT Beteiligungsgesellschaft, Germany, representing the Max-Planck Society, the Astrophysical Institute Potsdam, and Heidelberg University; The Ohio State University, and The Research Corporation, on behalf of The University of Notre Dame, University of Minnesota, and University of Virginia.- Publication:
-
The Astrophysical Journal
- Pub Date:
- August 2013
- DOI:
- arXiv:
- arXiv:1305.6051
- Bibcode:
- 2013ApJ...773...46H
- Keywords:
-
- galaxies: individual: M31 M33;
- stars: massive;
- supergiants;
- Astrophysics - Solar and Stellar Astrophysics
- E-Print:
- To appear in the Astrophysical Journal