Spatial and temporal variation of stable isotopes in precipitation across Costa Rica
Abstract
The geographic location of Costa Rica on the Central American Isthmus creates unique mountainous microclimate systems across the country that receive moisture inputs directly from the Caribbean Sea and the Pacific Ocean. These microclimate systems offer an exceptional opportunity to study isotopic variations in precipitation over the Central American continental divide. Here, we present a spatial and temporal analysis of historic Global Network of Isotopes in Precipitation (GNIP) records and current monitoring efforts. GNIP Sampling campaigns were mainly comprised of monthly-integrated samples during intermittent years from 1990 to 2005. Ongoing monitoring includes three distinct microclimate locations along the continental divide. Samples were grouped into four main regions: Nicoya Peninsula (δ2H = 6.65δ18O-0.13; r2=0.86); Pacific Coast (δ2H = 7.60δ18O+7.95; r2=0.99); Caribbean Slope (δ2H = 6.97δ18O+4.97; r2=0.97); and Central Valley (δ2H = 7.94δ18O+10.38; r2=0.98). The overall meteoric water line for Costa Rica can be defined as δ2H = 7.61δ18O+7.40 (r2=0.98). The regression of precipitation amount with annual arithmetic means in samples from all four regions yields a slope of -1.6 ‰ δ18O per 100 mm of rain (r2 = 0.57), which corresponds with a temperature effect of -0.37 ‰ δ18O/°C. A strong correlation (r2=0.77) of -2.0 ‰ δ18O per km of elevation was found. Samples within the Nicoya Peninsula and Caribbean lowlands appear to be dominated by evaporation enrichment, especially during the dry months (January-April), likely resulting from small precipitation amounts. In the inter-mountainous region of the Central Valley and Pacific slope, complex moisture recycling processes may dominate isotopic variations. Generally, isotopic values tend to be more depleted as the rainy season progresses over the year (May-October). HYSPLIT back trajectory analyses indicate that enriched isotopic compositions are related to central Caribbean parental moisture and small rainfall intensities. Depleted events appear to be related to high rainfall amounts despite the parental origin of the moisture. The combination of historic records and current isotope data improves interpretation of paleoclimatic archives in the region and advances ongoing calibration and validation efforts of regional and global circulation models.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2013
- Bibcode:
- 2013AGUFMPP23C1994W
- Keywords:
-
- 1041 GEOCHEMISTRY Stable isotope geochemistry;
- 1854 HYDROLOGY Precipitation;
- 0429 BIOGEOSCIENCES Climate dynamics