Modeling Climate Change and Thermal Restoration Strategies in a Northern California Stream Using HEAT SOURCE and Distributed Temperature Sensing Fiber-optics
Abstract
Land uses which modify stream channel structure and riparian vegetation can alter the mechanisms of heat transfer within a stream. Stream temperature is a crucial abiotic factor which governs aquatic biota quantity, distribution, and overall health. The IPCC has projected stream temperature to increase with changes in global climate due to elevated air temperature and changes in precipitation patterns. Stream temperature modeling can investigate current and future stream temperature conditions. Heat Source, developed by Oregon Department of Environmental Quality (DEQ), was applied to a one kilometer section of the North Fork of the Salmon River, a tributary of the Klamath River, northern California, USA. Heat Source accounts for internal and external thermal energy transfers to predict stream temperature at point locations. Inputs include meteorologic, geomorphologic, hydrologic and topographic measurements from the study site. The Salmon River watershed has a legacy of historic hydraulic gold mining which has changed channel morphology and created extensive denuded gravel bars. The Salmon River is listed as thermally impaired under California's List of Impaired Water Bodies 303(d) with mainstem temperature commonly exceeding salmonid temperature thresholds. The objective of this research was to utilize Heat Source to predict effects of climate change, riparian management, and channel geometry on stream temperature. This study employed Distributed Temperature Sensing fiber-optics (DTS) to detect stream heating and cooling at one meter resolution which was then used to calibrate Heat Source at the study reach. Predicted values closely matched DTS measurements reflecting shifting responses to air temperature, riparian vegetation distribution, and channel geometry conditions. Heat Source modeling of climate change scenarios using forecasted 2049 and 2099 elevated air temperatures are presented. Furthermore, temperature impacts of increased riparian vegetation density and stream channelization were investigated as possible thermal restoration strategies to buffer streams from elevated temperatures resulting from climate change.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2013
- Bibcode:
- 2013AGUFMGC23C0949B
- Keywords:
-
- 1807 HYDROLOGY Climate impacts;
- 1847 HYDROLOGY Modeling;
- 1637 GLOBAL CHANGE Regional climate change;
- 1871 HYDROLOGY Surface water quality