Drilling a ';super-volcano': volcanology of the proximal rhyolitic volcanic succession in the HOTSPOT deep drill hole, Idaho, Yellowstone hot-spot track
Abstract
Project HOTSPOT seeks to understand the bimodal volcanism in the Yellowstone-Snake River large igneous province, including the magma generation and eruption history. The 1.9 km-deep Kimberly well in southern Idaho, USA, reveals a proximal mid-Miocene rhyolitic and basaltic volcanic succession marginal to the postulated Twin Falls eruptive centre. Three rhyolitic eruption-units (each we interpret to record a single eruption, based on core descriptions) are separated by basaltic lavas, palaeosols and volcaniclastic sediments, and are being dated by 40Ar-39Ar on plagioclases. Whole-rock and mineral chemical data, from each unit, has been compiled to facilitate correlation with well-studied eruption-units at more distal outcrops, where we have detailed chemical, palaeomagnetic and radiometric characterisation. Results will contribute to frequency and volume calculations for some of the most catastrophic super-eruptions in Earth history. As the volcanism is of Snake River (SR)-type and lacks typical pumice fall deposits and low-moderate grade ignimbrites, interpreting the physical origin of the units can be difficult; many SR-type rheomorphic ignimbrites are flow-banded and resemble lavas, and the distinction between these and true lavas involves interpretation of critical evidence from lower contacts (e.g., distinguishing basal lava autobreccias from peperitic contacts, which can occur at the bases of SR-type lavas and ignimbrites). The lower most eruption-unit, ';Kimberly Rhyolite 1,' is >1323 m thick (base not seen) and suggests ponding in the margin of a caldera. Few vitroclastic textures are preserved, but a rheomorphic ignimbrite origin is inferred by folded fabrics and scattered obsidian chips (2-5 mm in size) within a thick lithoidal zone, which passes sharply upwards into a 39.6 m thick vitrophyre with an autobrecciated top and it is overlain by 18 m (caldera?) lake sediments. However, lithic mesobreccia, that characterise caldera fills elsewhere, are not seen. ';Kimberly Rhyolite 2' is 168.2 m-thick with a non-brecciated base, lithoidal centre and an autobrecciated upper vitrophyre (45 m thick). It also contains 2-5 mm obsidian chips and may represent a proximal outflow correlative of more distal ignimbrites in southern Idaho. It is overlain by laminated sediments (64 m-thick), basalt lavas (67 m thick), 23 m-thick laminated sediments, and a 30 m basalt lava with an upper palaeosol. Overlying this palaeosol is the uppermost unit,' Kimberly Rhyolite 3' (127 m thick) with a 4.5 m vitrophyric basal autobreccia, well-developed flow banding and no visible pyroclasts. The nature of the basal contact, and the lack of any pyroclastic features, suggest its origin is likely a rhyolitic lava and whole rock and mineral chemistries indicate it may be a correlative of the 6.53 Ma, ≤200 m-thick, Shoshone rhyolite lava. The Kimberly well is the only window into potential caldera fills in the SR-Plain, southern Idaho. Any correlations made with this proximal succession would greatly increase the volume of SR-outflow facies by demonstrating caldera fills, that to date, have only been inferred.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2013
- Bibcode:
- 2013AGUFM.V13D2649K
- Keywords:
-
- 8428 VOLCANOLOGY Explosive volcanism