Understanding the thermal and tectonic evolution of Marie Byrd Land from a reanalysis of airborne geophysical data in the West Antarctic Rift System
Abstract
The West Antarctic Rift System (WARS) is a region characterized by a significant topographic range, a complex tectonic history, and active subglacial volcanism. Those elements exert a large influence on the stability of the West Antarctic Ice Sheet, which flows within the cradle-shaped rift system and is currently grounded well below sea level. This potentially unstable configuration is the motivation for gaining a better understanding of the ice sheet boundary conditions dictated by rift evolution and how they impact the ice flow. In this study we focus on characterizing the distribution of and transition between sedimentary basins and inferred geothermal heat flux from the flanks to the floor of the rift system. We do so through analysis of gravity data both for sources within the deep lithosphere and near surface targets in the crust. A compilation of gravity datasets over West and Central Antarctica and the analysis thereof is presented. In particular we use gravity data collected during several airborne geophysical surveys: CASERTZ (1994-1997), SOAR/WMB (1997-1998), AGASEA (2004-2005), ICEBRIDGE (2008-2011), and GIMBLE (2012-2013). New processing and data reduction methodologies are applied to the older gravity surveys to improve the high frequency signal content and to make these surveys compatible with modern works (i.e. AGASEA, ICEBRIDGE, GIMBLE). The high frequency signal provides better resolution of small-scale features within survey blocks but long-wavelength integrity is retained by registering the airborne free-air disturbance within those blocks to the gravity disturbance derived from the GOCE global satellite gravity field. This allows for consistent long wavelength interpretation across the merged surveys and provides improved gravity analysis of the deep lithosphere while retaining the capacity to study smaller scale features. A crustal model for the area is produced using the Bouguer anomaly and spectral analyses of the Bouguer anomaly and free-air disturbance. Airy isostatic corrections are applied to the Bouguer anomaly where permissible to set the foundation for the identification and discrimination of sedimentary basins and intrusive/extrusive complexes beneath the West Antarctic Ice Sheet. This analysis also provides a framework for interpreting POLENET seismic studies in the region. Successful integration of the gravity and seismic results will ultimately be necessary for understanding the thermal evolution of Marie Byrd Land and its context within the West Antarctic Rift System.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2013
- Bibcode:
- 2013AGUFM.T13A2514Q
- Keywords:
-
- 1219 GEODESY AND GRAVITY Gravity anomalies and Earth structure;
- 0920 EXPLORATION GEOPHYSICS Gravity methods;
- 0726 CRYOSPHERE Ice sheets;
- 8109 TECTONOPHYSICS Continental tectonics: extensional