Regional comparisons of Vs30 and Spectral Ratio Methods
Abstract
Earthquake damage is often increased due to local ground-motion amplification in soft soils and thick basin sediments with factors such as topographic effects and water saturation. Seismic hazard assessments depend on detailed information on local site response and many different methods have been developed to estimate site response. Based on numerous empirical studies, the average shear-wave velocity in the upper 30 m (Vs30) has become the most common means of classifying site conditions and has been adopted in the NEHRP design provisions for new buildings. In general, higher Vs30 values are associated with firm, dense rock and lower levels of ground shaking while lower Vs30 values are associated with softer soils and high site amplification. Vs30 is commonly computed by measuring the time it takes for shear-waves to travel from 30m depth to the surface using either active sources such as explosions or passive ambient noise microtremor sources. Since this approach is limited to locations where active measurements are undertaken, recent methods have sought to approximate Vs30 regionally, such as using topographic slope as a proxy. In this presentation, we compute a standard site response, horizontal-to-vertical spectral ratio (HVSR) using long-term power spectral density statistics of both ambient noise and earthquake signals at permanent and temporary seismic stations. We compare the HVSR results to surface observations of Vs30 and approximations using topographic slope in several different regions including the Eastern United States, St. Louis and the Los Angeles basin. In our comparison of the HVSR results to Vs30, we find that HVSR peak frequency can be used as a proxy for Vs30. Relationships between surface measured Vs30 and HVSR are less scattered than with Vs30 estimated using topographic approximations. In general, higher Vs30 is associated with higher HVSR peak frequency with variations in slope for different regions. We use these regional relationships to estimate NEHRP soil class at over 200 seismic stations in the US.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2013
- Bibcode:
- 2013AGUFM.S53B2412M
- Keywords:
-
- 7212 SEISMOLOGY Earthquake ground motions and engineering seismology;
- 7294 SEISMOLOGY Seismic instruments and networks;
- 7299 SEISMOLOGY General or miscellaneous