Comparison of four methods of aerodynamic roughness length parameterization in semi-arid shrublands with airborne LiDAR, hyperspectral, and meteorological data
Abstract
The aerodynamic roughness length (z0) plays an important role in the flux exchange between the land surface and atmosphere. Especially in semiarid shrublands, z0 is a key parameter for physical models of aeolian transport. z0 is influenced by the height, geometry, density and pattern of roughness elements. Light detection and ranging (LiDAR) is well suited to measure the vegetation height and has been used to estimate z0 across large areas. In this study, we combined airborne LiDAR, hyperspectral imagery and meteorological measurements to estimate z0, and assessed the ability of airborne LiDAR to estimate z0 over semi-arid shrublands. Airborne LiDAR data was used to derive the height of Wyoming big sagebrush (Artemisia tridentate subsp. wyomingensis) over a study area in the Great Basin, Idaho. Roughness density was related with percent vegetation cover which was estimated by integrating LiDAR and hyperspectral data, both collected in August 2011. Four methods of parameterization of z0 were applied and compared with the vegetation height from LiDAR; roughness from LiDAR and hyperspectral; NDVI and LAI from HyMap; and a geometric approach using meteorological data (e.g. wind speed). Micrometeorological measurements at two eddy covariance sites in the study area were used for validation of parameterized z0. The spatial variability of z0 was analyzed and the relationship with vegetation density was explored. The results demonstrated the potential of using airborne LiDAR data to estimate z0 at a regional scale in semi-arid shrublands. Furthermore, z0 showed a tight relationship with local variance of vegetation height and vegetation density.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2013
- Bibcode:
- 2013AGUFM.H13J1504L
- Keywords:
-
- 1813 HYDROLOGY Eco-hydrology;
- 1814 HYDROLOGY Energy budgets