Tectonic Transition Between the Southern Extent of the Cascadia Subduction Zone and the Northernmost San Andreas Fault System near Root Creek, Northern California
Abstract
The primary objective of this project is to characterize the transition between Cascadia subduction zone (CSZ)-related structures and the northern-most extent of faults associated with the San Andreas Fault (SAF) transform margin in northwestern California, specifically the transition between the Maacama Fault zone and the Little Salmon Fault. The Little Salmon Fault, a large, northwest-trending thrust fault, arguably near the base of the fold and thrust belt associated with the Cascadia megathrust, extends southwest near the latitude of the Mendocino Triple Junction. The transition from the southern end of the Cascadia subduction zone and related faults to the northward migrating transform margin is poorly understood. Deformation of Neogene sediments near the confluence of Root Creek and the Van Duzen River, approximately 10 miles west of the town of Bridgeville, may provide clues to the broad evolution from compressional tectonic forces of the southernmost CSZ to translational motion of the northern SAF system. This study includes documentation of a faulted and folded strath terrace near the mouth of Root Creek and mapping of adjacent deformed young deposits. Fracture data gathered at this and other nearby sites provides insight into local tectonic strain. Geological mapping incorporates high resolution topographic data and field information about tectonic geomorphological features and the structural characteristics of this transition zone.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2013
- Bibcode:
- 2013AGUFM.G41A0928N
- Keywords:
-
- 1209 GEODESY AND GRAVITY Tectonic deformation