A High-Resolution Sensor Network for Monitoring Glacier Dynamics
Abstract
Changes in Greenland and Antarctic ice sheets due to ice flow/ice-berg calving are a major uncertainty affecting sea-level rise forecasts. Latterly GNSS (Global Navigation Satellite Systems) have been employed extensively to monitor such glacier dynamics. Until recently however, the favoured methodology has been to deploy sensors onto the glacier surface, collect data for a period of time, then retrieve and download the sensors. This approach works well in less dynamic environments where the risk of sensor loss is low. In more extreme environments e.g. approaching the glacial calving front, the risk of sensor loss and hence data loss increases dramatically. In order to provide glaciologists with new insights into flow dynamics and calving processes we have developed a novel sensor network to increase the robustness of data capture. We present details of the technological requirements for an in-situ Zigbee wireless streaming network infrastructure supporting instantaneous data acquisition from high resolution GNSS sensors thereby increasing data capture robustness. The data obtained offers new opportunities to investigate the interdependence of mass flow, uplift, velocity and geometry and the network architecture has been specifically designed for deployment by helicopter close to the calving front to yield unprecedented detailed information. Following successful field trials of a pilot three node network during 2012, a larger 20 node network was deployed on the fast-flowing Helheim glacier, south-east Greenland over the summer months of 2013. The utilisation of dual wireless transceivers in each glacier node, multiple frequencies and four ';collector' stations located on the valley sides creates overlapping networks providing enhanced capacity, diversity and redundancy of data 'back-haul', even close to ';floor' RSSI (Received Signal Strength Indication) levels around -100 dBm. Data loss through radio packet collisions within sub-networks are avoided through the adoption of beacon based time division multiple access (tdma). In-house single-epoch GNSS processing software provides 1-2 cm coordinate time-series capable of detecting a major calving event during the 2012 pilot study. These data can be synthesised with other remotely sensed data e.g. airborne lidar, oblique photogrammetry and TanDEM-X satellite imagery derived DEMs giving an opportunity to fine-tune glacial models delivering a deeper understanding of the contribution to sea-level rise made by tidewater glaciers such as Helheim. The flexibility of our network would make it suitable for deployment in other extreme environments such as areas at risk from earthquakes and landslides.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2013
- Bibcode:
- 2013AGUFM.C43C0689E
- Keywords:
-
- 0720 CRYOSPHERE Glaciers;
- 0776 CRYOSPHERE Glaciology;
- 0794 CRYOSPHERE Instruments and techniques