River Channel Expansion Reveals Ice Sheet Runoff Variations
Abstract
The Greenland Ice Sheet has been rapidly melting over the last decades. To quantify its contribution to global sea-level rise, we urgently need to understand flux of meltwater into proglacial rivers. Direct measurements of river runoff at the Greenlandic coast are sparse due to the dynamic braided channels with unstable banks, which makes in-situ discharge monitoring challenging. Here, we explore the use of ';inundation-discharge' relationships through analysis of both time-lapse camera imagery and MODIS remote-sensing reflectance data to provide us with a proxy record of river discharge for proglacial systems. We utilize MODIS band6 (mid IR 1628 - 1652 nm). Light in this band is strongly absorbed by water, and reflectance is not sensitive to sediment suspended in the water, making it an appropriate proxy for river braidplain inundation. Our focus is on two Greenlandic river systems; the Watson River near Kangerlussuaq and the Naujat Kuat River near Nuuk, to track band6 reflectance characteristics over all cloud-free days for the summers of 2000-2012. For validation, a ground-based inundation record is assembled from time-lapse imagery overlooking the Watson River for 2012. Exponential inundation-discharge relationships were established using our in-situ discharge records for the Watson River near Kangerlussuaq (2007-2012, R2=0.55) and the Naujat Kuat River near Nuuk (2011-2012, R2 = 0.42). Using these relationships to predict total annual river discharge proves reasonably accurate for most years of the observational record (varying between 96-86%). Interestingly, the extreme melt year of 2012 was not reliably predicted using the established relationship. We compared these predictions against an inundation record from the in-situ time-lapse camera and found that a ground-based observations track extreme discharge events more reliably (R2 = 0.60). This methodology allows us to extend existing river records back beyond the 5 or 2 years of in-situ observations. Whereas direct calibration is essential to establish total annual volumes, intra-annual variation of river runoff can be mapped for proglacial river systems along the Greenland margin.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2013
- Bibcode:
- 2013AGUFM.C33B0730O
- Keywords:
-
- 0744 CRYOSPHERE Rivers;
- 0794 CRYOSPHERE Instruments and techniques;
- 1621 GLOBAL CHANGE Cryospheric change;
- 1825 HYDROLOGY Geomorphology: fluvial