High-resolution passive sampling of dissolved methane in the water column of lakes in Greenland
Abstract
Arctic lakes are important participants in the global carbon cycle, releasing methane in a warming climate and contributing to a positive feedback to climate change. In order to yield detailed methane budgets and understand the implications of warming on methane dynamics, high-resolution profiles revealing methane behavior within the water column need to be obtained. Single day sampling using disruptive techniques has the potential to result in biases. In order to obtain high-resolution, undisturbed profiles of methane concentration and isotopic composition, this study evaluates a passive sampling method over a multi-day equilibration period. Selected for this study were two small lakes (<1km2) within a narrow valley stretching between Russells Glacier and Søndre Strømfjord in southwestern Greenland, which are part of an ongoing study of a series of seven lakes. Commercially available, 150 mL, polyethylene Passive Diffusion Bags (PDB's) were deployed in July 2013 for five days at 0.5-meter depth intervals. PDB samples were compared to samples collected with a submersible, electric pump taken immediately before PBD deployment. Preliminary CH4 concentrations and carbon isotopes for one lake were obtained in the field using a Los Gatos Research Methane Carbon Isotope Analyzer. PDB sampling and pump sampling resulted in statistically similar concentrations (R2=0.89), ranging from 0.85 to 135 uM from PDB and 0.74 to 143 uM from pump sampling. In anoxic waters of the lake, where concentrations were high enough to yield robust isotopic results on the LGR MCIA, δ13C were also similar between the two methods, yielding -73‰ from PDB and -74‰ from pump sampling. Further investigation will produce results for a second lake and methane carbon and hydrogen isotopic composition for both lakes. Preliminary results for this passive sampling method are promising. We envision the use of this technique in future studies of dissolved methane and expect that it will provide a more finely resolved vertical profile, allowing for a more complete understanding of lacustrine methane dynamics.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2013
- Bibcode:
- 2013AGUFM.B33K0603G
- Keywords:
-
- 0428 BIOGEOSCIENCES Carbon cycling;
- 0454 BIOGEOSCIENCES Isotopic composition and chemistry;
- 1615 GLOBAL CHANGE Biogeochemical cycles;
- processes;
- and modeling;
- 0746 CRYOSPHERE Lakes