The effect of shadow fronts on dynamics of the surface layer during evening transitions
Abstract
Two MATERHORN-X (Mountain Terrain Atmospheric Modeling and Observation Program) field campaigns were conducted at Dugway, UT, USA during the last year. An Autumn Campaign from 25 September - 21 October 2012 and a Spring Campaign from 1- 31 May 2013. A subset of the campaigns included dense observations along the East Slope of Granit Peak (40.096° N, -113.253° W). Observations included five multi-sonic anemometer eddy covariance towers (two with full energy budget stations), eleven small energy budget stations, fifteen automated weather stations, a distributed temperature sensing (DTS) system, hot-film anemometry, infrared camera surface temperature observations and up to three Doppler lidars. For this presentation, our analysis will focus on characterizing the response of mean wind and thermodynamics variables, as well as turbulence quantities during the evening transitions on East Slope. Previous observations have indicated that the dynamics of turbulence during evening transitions in steep mountainous terrain rapidly follows surface temperature changes associated with shadows produced by the local topography. The observations of flow transitions over the more moderate East Slope of Granite (~3-8%) indicate that wind shift direction and turbulence decay is not as tightly coupled to the shadow. Details of the transition response will be presented in the context of a new process model.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2013
- Bibcode:
- 2013AGUFM.A14D..03P
- Keywords:
-
- 3307 ATMOSPHERIC PROCESSES Boundary layer processes;
- 3322 ATMOSPHERIC PROCESSES Land/atmosphere interactions;
- 3359 ATMOSPHERIC PROCESSES Radiative processes