A Survey of Airborne Observations of Biological Aerosol over the Continental United States during NASA SEAC4RS
Abstract
Aerosols play a significant role in regulating Earth's climate. Biological aerosols exist in the atmosphere in many forms including bacteria, fungal spores, pollens, viruses, and plant detritus. While laboratory studies have illustrated the potential for biological aerosol to act as efficient ice nuclei, ambient observations do not clearly show the significance of this mechanism for ice formation. Particularly lacking for assessing the role of biological aerosol on cloud processes are observations of the vertical extent of biological aerosol, especially in conjunction with strong convection as a pathway for redistributing particles from surface sources to the free troposphere. An extensive suite of instrumentation measuring aerosol chemical, physical, and optical properties was deployed aboard the NASA DC-8 aircraft during the SEAC4RS campaign (Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys) in August/September of 2013. Flights were focused on characterizing emissions and transport of aerosols in the Southeast United States, a region characterized by strong biogenic activity. Additionally, convection associated with the North American Monsoon and Atlantic-basin hurricanes was targeted. Airborne biological aerosol was specifically measured during SEAC4RS with a Wideband Integrated Bioaerosol Sensor (WIBS-4A, Droplet Measurement Technologies). WIBS-4A utilizes a single-particle laser-induced fluorescence technique at two excitation wavelengths (280nm and 370nm) to identify biological aerosol, in addition to simultaneous determination of optical size and asymmetry factor for particles with diameter greater than 800nm. Single-particle mass spectrometry coupled with filter-based chemical composition and bacterial speciation analyses will be used to assess relationships with co-emitted mineral dusts. Vertical profiles for the background atmosphere will be compared to profiles influenced by convective storms to assess redistribution processes related to cloud formation. Survey flights will also explore the spatial variability of boundary-layer and free-tropospheric bioaerosol properties.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2013
- Bibcode:
- 2013AGUFM.A11B0027Z
- Keywords:
-
- 0305 ATMOSPHERIC COMPOSITION AND STRUCTURE Aerosols and particles;
- 0394 ATMOSPHERIC COMPOSITION AND STRUCTURE Instruments and techniques