PIPER: Primordial Inflation Polarization Explorer
Abstract
The Primordial Inflation Polarization Explorer (PIPER) is a balloon-borne instrument to measure the polarization of the cosmic microwave background in search of the expected signature of primordial gravity waves excited during an inflationary epoch shortly after the Big Bang. PIPER consists of two co-pointed telescopes, one sensitive to the Q Stokes parameter and the other to U. Sky signals will be detected with 5120 transition edge sensor (TES) bolometers distributed in four rectangular close-packed arrays maintained at 150 mK. To maximize the sensitivity of the instrument, both telescopes are mounted within a single open bucket dewar and are maintained at 1.5 K throughout flight, with no ambient-temperature windows between the sky and the detectors. To mitigate the effects of systematic errors, the polarized sky signals will be modulated using a variable-delay polarization modulator. PIPER will observe at frequencies 200, 270, 350, and 600 GHz to separate the CMB from polarized dust emission within the Galaxy. A series of flights alternating between northern and southern hemisphere launch sites will produce nearly full-sky maps in Stokes I, Q, U, and V. I will discuss the current status and potential science returns from the PIPER project.
- Publication:
-
American Astronomical Society Meeting Abstracts #221
- Pub Date:
- January 2013
- Bibcode:
- 2013AAS...22122904L