Modelling and analysis of a high-performance Class D audio amplifier using unipolar pulse-width-modulation
Abstract
A high-performance class D audio amplifier using unipolar pulse-width-modulation (PWM) with double-sided natural sampling is presented in this article. In order to comprehend and design the system properly, the class D audio amplifier is modelled and analysed. A wide range triangle-wave signal with good linearity and magnitude proportional to supply voltage is embedded in the proposed class D audio amplifier for maximum output power, high power supply rejection ratio (PSRR) and low total harmonic distortion (THD). Design results based on CSMC 0.5-µm 5-V complementary metal-oxide-semiconductor process demonstrate that the proposed class D audio amplifier can operate with supply voltage in the range 2.4-5.5 V and supports 2.8 W output power from a 5.5 V supply; the maximum efficiency is above 95%, the PSRR is -82 dB, the signal-to-noise ratio (SNR) is 97 dB and the total harmonic distortion plus noise (THD+N) is less than 0.1% between 20 and 20 kHz with output power 0.4 W; the quiescent current without load is 1.8 mA, and the shutdown current is 0.01 µA. The active area of the class-D audio power amplifier is 1.5 mm × 1.5 mm.
- Publication:
-
International Journal of Electronics
- Pub Date:
- February 2012
- DOI:
- 10.1080/00207217.2011.623270
- Bibcode:
- 2012IJE....99..163Z
- Keywords:
-
- loop design;
- class D audio amplifier;
- distortion;
- PWM;
- high efficiency