Simulations of laser experiments of radiative and non-radiative shocks
Abstract
The Center for Radiative Shock Hydrodynamics (CRASH) at the University of Michigan was established to study the properties of radiative shocks using both numerical simulation and shock-tube experiments on the Omega Laser at the University of Rochester. The laser accelerates a thin Be disk, which acts like a piston, driving a shock with an initial propagation velocity of 200 km/s into a tube filled with Xe. Analytic estimates indicate that a shock propagating with a velocity greater than about 60 km/s through Xe under these conditions should be strongly radiative. This paper discusses numerical simulations of a proposed modification to this experiment that produces a non-radiative shock. Comparison of the radiative and non-radiative cases provides an excellent opportunity for assessing the effects of radiation on shock structure and flow morphology. For the non-radiative case, the initial shock speed is reduced to 20 km/s by increasing the thickness of the Be disk and by decreasing the energy of the laser. Two-dimensional simulations of targets with cylindrical shock tubes and three-dimensional simulations of more complex targets with elliptical shock tubes are described. In addition, the effect of the shock speed on the cross-sectional area of the tube is discussed.
- Publication:
-
High Energy Density Physics
- Pub Date:
- June 2012
- DOI:
- 10.1016/j.hedp.2011.12.002
- Bibcode:
- 2012HEDP....8..141F