Planet Occurrence within 0.25 AU of Solar-type Stars from Kepler
Abstract
We report the distribution of planets as a function of planet radius, orbital period, and stellar effective temperature for orbital periods less than 50 days around solar-type (GK) stars. These results are based on the 1235 planets (formally "planet candidates") from the Kepler mission that include a nearly complete set of detected planets as small as 2 R ⊕. For each of the 156,000 target stars, we assess the detectability of planets as a function of planet radius, R p, and orbital period, P, using a measure of the detection efficiency for each star. We also correct for the geometric probability of transit, R sstarf/a. We consider first Kepler target stars within the "solar subset" having T eff = 4100-6100 K, log g = 4.0-4.9, and Kepler magnitude Kp < 15 mag, i.e., bright, main-sequence GK stars. We include only those stars having photometric noise low enough to permit detection of planets down to 2 R ⊕. We count planets in small domains of R p and P and divide by the included target stars to calculate planet occurrence in each domain. The resulting occurrence of planets varies by more than three orders of magnitude in the radius-orbital period plane and increases substantially down to the smallest radius (2 R ⊕) and out to the longest orbital period (50 days, ~0.25 AU) in our study. For P < 50 days, the distribution of planet radii is given by a power law, df/dlog R = kRR α with kR = 2.9+0.5 - 0.4, α = -1.92 ± 0.11, and R ≡ R p/R ⊕. This rapid increase in planet occurrence with decreasing planet size agrees with the prediction of core-accretion formation but disagrees with population synthesis models that predict a desert at super-Earth and Neptune sizes for close-in orbits. Planets with orbital periods shorter than 2 days are extremely rare; for R p > 2 R ⊕ we measure an occurrence of less than 0.001 planets per star. For all planets with orbital periods less than 50 days, we measure occurrence of 0.130 ± 0.008, 0.023 ± 0.003, and 0.013 ± 0.002 planets per star for planets with radii 2-4, 4-8, and 8-32 R ⊕, in agreement with Doppler surveys. We fit occurrence as a function of P to a power-law model with an exponential cutoff below a critical period P 0. For smaller planets, P 0 has larger values, suggesting that the "parking distance" for migrating planets moves outward with decreasing planet size. We also measured planet occurrence over a broader stellar T eff range of 3600-7100 K, spanning M0 to F2 dwarfs. Over this range, the occurrence of 2-4 R ⊕ planets in the Kepler field increases with decreasing T eff, with these small planets being seven times more abundant around cool stars (3600-4100 K) than the hottest stars in our sample (6600-7100 K).
Based in part on observations obtained at the W. M. Keck Observatory, which is operated by the University of California and the California Institute of Technology.- Publication:
-
The Astrophysical Journal Supplement Series
- Pub Date:
- August 2012
- DOI:
- 10.1088/0067-0049/201/2/15
- arXiv:
- arXiv:1103.2541
- Bibcode:
- 2012ApJS..201...15H
- Keywords:
-
- planetary systems;
- stars: statistics;
- techniques: photometric;
- Astrophysics - Earth and Planetary Astrophysics
- E-Print:
- Submitted to ApJ, 22 pages, 10 figures