Detection of D-^3He Fusion γ-Rays using Gas Cherenkov Detectors
Abstract
The high-energy γ-ray from ^3He(d,γ)^5Li reactions has drawn the attention of the nuclear physics and fusion community as a diagnostic signature to study the ^5Li nuclear structure and the D-^3He fusion reaction. In the past, the D-^3He γ-rays have been measured via accelerator-based beam-target experiments and recently in tokamak-based fusion reactors. In this work, we report the detection of D-^3He fusion γ-rays generated from inertial confinement fusion (ICF) implosions at the OMEGA laser facility. The γ-ray signal observed using Gas Cherenkov Detectors (GCD) is proportional to the independently measured 14.7-MeV fusion proton yield and provides a high-bandwidth alternative to fusion protons for D-^3He burn-history measurements. By comparing γ-rays from D-^3He and D-T implosions, we were able to examine (1) similarities in the γ-ray spectra of D-^3He and D-T and (2) disparities in the γ-to-particle branching ratios of D-^3He and D-T. This experimental work motivates further theoretical investigation of the multichannel ^5Li- and ^5He-system.
- Publication:
-
APS Division of Plasma Physics Meeting Abstracts
- Pub Date:
- October 2012
- Bibcode:
- 2012APS..DPPUO5013K