Farmer Resettlements and Water Energy Stresses Arising From Aggravating Drought Conditions in Mahaweli River Watershed, Sri Lanka
Abstract
Climate change is expected to cause significant changes in water quantity and water quality in river basins throughout the world, with particularly significant impacts in developing regions. Climate change effects are often exacerbated by other simultaneous activities in developing countries, such as population growth, reliance on subsistence agriculture, and expanding provision of electricity. Each of these activities requires access to readily-available freshwater. For example, population growth requires more water for irrigation as food production needs increase. Additionally, water is needed for generating electricity in hydropower facilities as well as other facilities, which require water to run steam turbines or to cool facilities. As such, many developing countries face the real and immediate need to anticipate and adapt to climatic stresses on water resources in both the agricultural and residential sectors. Water withdrawal in both of these sectors is largely driven by individual behaviors, such as electricity use in the home and irrigation practices on farmland, aggregated at the household, community, and regional level. Our ongoing project in Sri Lanka focuses on understanding aforementioned issues in coupled natural and human systems in the Mahaweli River Watershed (MWR) to inform decision-makers to streamline policies and strategies for effective adaptation to worsening drought conditions. MWR produces more than 60% of the rice demand and nearly 40% of the energy requirement of the country. Although irrigation is currently the sector that withdraws the most water, with government plans for resettling farmer communities and developing new urban centers in the region by 2030, electricity production is expected to compete for water against irrigation in the future. Thus, understanding the water-energy nexus is crucial to planning for conservation and efficiency. Through a pilot survey conducted by our interdisciplinary research team, in five locations in MWR, we collect information on household and farm level water and energy use, demand-side water management practices, and farmers' willingness and capacities to practice them. We use these self-reported pilot data together with water and energy utility company data to model increasing water-energy stresses in the watershed, and its effect on existing water allocation issues related to irrigation and power generation. Drawing upon the preliminary results of this work, this paper presents the emerging water-energy issues and plausible adaptation measures in MWR. This work will pave the way to understand the inherent interconnectivities of water energy stresses in multi-purpose watersheds in the developing world.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2012
- Bibcode:
- 2012AGUFMPA43A1972T
- Keywords:
-
- 6344 POLICY SCIENCES / System operation and management;
- 4323 NATURAL HAZARDS / Human impact;
- 4330 NATURAL HAZARDS / Vulnerability