Relationships between brightness of nighttime lights and population density
Abstract
Brightness of nighttime lights has been proven to be a good proxy for socioeconomic and demographic statistics. Moreover, the satellite nighttime lights data have been used to spatially disaggregate amounts of gross domestic product (GDP), fossil fuel carbon dioxide emission, and electric power consumption (Ghosh et al., 2010; Oda and Maksyutov, 2011; Zhao et al., 2012). Spatial disaggregations were performed in these previous studies based on assumed linear relationships between digital number (DN) value of pixels in the nighttime light images and socioeconomic data. However, reliability of the linear relationships was never tested due to lack of relative high-spatial-resolution (equal to or finer than 1 km × 1 km) statistical data. With the similar assumption that brightness linearly correlates to population, Bharti et al. (2011) used nighttime light data as a proxy for population density and then developed a model about seasonal fluctuations of measles in West Africa. The Oak Ridge National Laboratory used sub-national census population data and high spatial resolution remotely-sensed-images to produce LandScan population raster datasets. The LandScan population datasets have 1 km × 1 km spatial resolution which is consistent with the spatial resolution of the nighttime light images. Therefore, in this study I selected 2008 LandScan population data as baseline reference data and the contiguous United State as study area. Relationships between DN value of pixels in the 2008 Defense Meteorological Satellite Program's Operational Linescan System (DMSP-OLS) stable light image and population density were established. Results showed that an exponential function can more accurately reflect the relationship between luminosity and population density than a linear function. Additionally, a certain number of saturated pixels with DN value of 63 exist in urban core areas. If directly using the exponential function to estimate the population density for the whole brightly lit area, relatively large under-estimations would emerge in the urban core regions. Previous studies have shown that GDP, carbon dioxide emission, and electric power consumption strongly correlate to urban population (Ghosh et al., 2010; Sutton et al., 2007; Zhao et al., 2012). Thus, although this study only examined the relationships between brightness of nighttime lights and population density, the results can provide insight for the spatial disaggregations of socioeconomic data (e.g. GDP, carbon dioxide emission, and electric power consumption) using the satellite nighttime light image data. Simply distributing the socioeconomic data to each pixel in proportion to the DN value of the nighttime light images may generate relatively large errors. References Bharit N, Tatem AJ, Ferrari MJ, Grais RF, Djibo A, Grenfell BT, 2011. Science, 334:1424-1427. Ghosh T, Elvidge CD, Sutton PC, Baugh KE, Ziskin D, Tuttle BT, 2010. Energies, 3:1895-1913. Oda T, Maksyutov S, 2011. Atmospheric Chemistry and Physics, 11:543-556. Sutton PC, Elvidge CD, Ghosh T, 2007. International Journal of Ecological Economics and Statistics, 8:5-21. Zhao N, Ghosh T, Samson EL, 2012. International Journal of Remote sensing, 33:6304-6320.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2012
- Bibcode:
- 2012AGUFMGC13C1106N
- Keywords:
-
- 0345 ATMOSPHERIC COMPOSITION AND STRUCTURE / Pollution: urban and regional