Timing and Mechanisms of Exhumation in West Central Sulawesi, Indonesia
Abstract
New U-Pb and 40Ar/39Ar ages from basement and intrusive rocks from NW Sulawesi record Neogene deformation, much younger than expected, and rapid exhumation. The unusual K-shape of Sulawesi reflects a complex tectonic history in the convergent zone between the Australian, Eurasian and Philippine Sea plates. The Neck is only a few tens of kilometres wide but includes mountains up to 2.5 km high, separating the 2 km deep Gorontalo Bay from similar depths of the Makassar Straits. It represents the Mesozoic-Cenozoic Sundaland continental margin and includes numerous granitoid intrusions. Little is known about the basement protoliths, timing of deformation or causes of magmatic activity. New models propose an important role for extension, associated with rollback of the Banda and North Sulawesi subduction zones. The major NNW-trending Palu-Koro strike-slip fault exhumes ultra high-pressure rocks and granitoids and may be related to North Sulawesi subduction. Work in progress on central Sulawesi's granitic basement orthogneisses shows that zircons dated by U-Pb LA-ICPMS contain Proterozoic inherited cores, and Devonian, Permo-Triassic and Jurassic zircon populations, which suggest an Australian-derived terrane. Basement rocks of the Palu Metamorphic Complex (PMC) were also thought to have Permo-Triassic protoliths and were previously suggested to represent the upper plate of a late Mesozoic subduction zone. Schistose rocks of the PMC have a complex history of metamorphism, crystal growth and deformation. Aluminium silicate porphyroblasts were interpreted as the product of contact metamorphism around granitic intrusions. However, pre-kinematic cordierite, andalusite porphyroblasts and muscovite pseudomorphs after staurolite in the complex indicate a regional high temperature-low pressure metamorphic event. The schists are strongly mylonitized, and overprinted by an S-C fabric recording several generations of biotite and some muscovite growth. 40Ar/39Ar thermochronology reveals a Pliocene cooling age. Further dating of biotites, white mica and amphiboles from schists and amphibolite intercalations is ongoing to determine the history of mylonitic deformation. Temperature-age plots using U-Pb zircon dating, and 40Ar/39Ar and (U-Th)/He geochronological techniques on biotites and apatites from granitic rocks, define thermal histories for the intrusions. Granites from the Neck and the mountain range west of the Palu-Koro Fault have approximately Late Miocene crystallisation ages as indicated by LA-ICPMS and 40Ar/39Ar cooling ages of 7.20 ± 0.05 Ma and 6.41 ± 0.06 Ma. Late-stage exhumation started in the Neck during the Pliocene (AHe: 2.9 ± 0.2 Ma). Erosion rates determined by (U-Th)/He ages can help estimate the amount of sediment input into adjacent deep basins. Age-elevation plots and modelling suggest exhumation rates of 0.75 (-0.16/+0.27) mm/a, which results in a calculated amount of c. 2 km of continental crust that has been removed in the last 3 Myr. We suggest magmatism, metamorphic core complex exhumation, and subsidence of Gorontalo Bay are all related to crustal thinning due to extension driven by subduction rollback.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2012
- Bibcode:
- 2012AGUFM.T43E2713H
- Keywords:
-
- 1140 GEOCHRONOLOGY / Thermochronology;
- 3660 MINERALOGY AND PETROLOGY / Metamorphic petrology;
- 8100 TECTONOPHYSICS;
- 8109 TECTONOPHYSICS / Continental tectonics: extensional