Magnetic structure of Bayonnaise knoll caldera including Hakurei hydrothermal site obtained from near-bottom magnetic vector field mapping by autonomous underwater vehicle
Abstract
The Bayonnaise knoll caldera is one of the silicic submarine calderas in the Izu-Ogasawara Arc in Japan. In 2003, a large-scale hydrothermal deposit was found in the caldera, called the Hakurei deposit. The caldera had been explored by four surveys using autonomous underwater vehicles (AUVs) from 2008 to 2011, and the near-bottom magnetic field was mapped over about 75% of the caldera floor. We carried out detailed correction for the magnetic field produced by the vehicle body, which allowed us to take advantage of the vector anomaly instead of the total anomaly for the magnetic inversion. We applied the inversion method using the block model together with the Akaike's Bayesian information criterion (ABIC). One remarkable thing is that we recognized significant difference between the magnetic inversion result using the vector anomaly and that using the total anomaly: the latter result explains the observed total anomalies excellently, but does not explain the vector anomalies adequately. Except for a rare case where the vector anomaly is perpendicular to the main field throughout, the total anomaly should be sufficient for evaluating the entire field, provided that the data is collected in sufficiently high density. In fact, the track lines of our survey sometimes separate from each other by about twice the altitude of the vehicle (100 m), which can lead to considerable aliasing in the sampled field. The vector anomaly can provide vital information in such a situation. The obtained magnetization distribution is well correlated with the topography. The caldera rim and central cone have weak magnetization, which is consistent with the fact that they consist of dacite rocks. On the other hand, the caldera floor shows high magnetization, which implies the existence of basaltic rocks. The high magnetization appears to continue north and south beyond the caldera rim, forming an NS-trending high magnetization zone. Because the caldera floor is generally covered with sediment and pumice, the existence of basaltic rocks in the caldera floor has not yet been directly confirmed. As for the regional settings, however, there are NS-lined small knolls in the north and south of the caldera, which seem to continue across the caldera, and these knolls are known to consist of basaltic rocks. We postulate that the high magnetization zone of the caldera is due to basaltic volcanism, which formed the knoll chains and occurred after the formation of the silicic caldera. The Hakurei hydrothermal site is located on the southeastern rim of the caldera floor, near an inferred intersection of the caldera rim and the knoll chain. In the magnetization map, the Hakurei deposit is located near the edge of the high magnetization zone. We can clearly observe a zone of reduced magnetization associated with the deposit, probably caused by the high-temperature hydrothermal alteration of the host basaltic rock.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2012
- Bibcode:
- 2012AGUFM.T43D2702H
- Keywords:
-
- 3005 MARINE GEOLOGY AND GEOPHYSICS / Marine magnetics and paleomagnetics;
- 3017 MARINE GEOLOGY AND GEOPHYSICS / Hydrothermal systems;
- 3080 MARINE GEOLOGY AND GEOPHYSICS / Submergence instruments: ROV;
- AUV;
- submersibles;
- 8185 TECTONOPHYSICS / Volcanic arcs