"Gray Areas": Silica gels, amorphous silica and cryptocrystalline silica on fault surfaces
Abstract
Silica gels, in the form of their solid-phase equivalents, are widely found in brittle fault zones and are commonly associated with mineral deposits. High- to moderate-velocity rotary friction experiments have produced silica gels on sliding surfaces coeval with dramatic slip weakening. In light of the latter, silica gel formation has been proposed as a potential mechanism of slip weakening during earthquakes in the shallow crust. However, low velocity sliding experiments have also produced significant amounts of amorphous material distributed throughout slipping layers, and dramatic weakening is not observed. Comparison of the products of laboratory experiments to geological examples is complicated by the diagenesis and lithification of silica gels. They may form hydrous and amorphous solids, hydrous crystalline solids, or dehydrate to quartz. In addition, the abundance and style of occurrence of these products in faults suggest that there are multiple origins for silica gels in faults. We review the mechanisms by which silica gels may form in fault zones and describe the solidification, crystallization and dehydration evolution of the silica. Analytical transmission electron microscope (TEM) observations of slip-surface silica deposits from the Corona Fault, San Francisco, the Dixie Valley Fault, Nevada, and the Olive Fault, Namibia typify the nano- to micro-structural evolution of the fault surface silica layers. We suggest criteria for identifying these materials in natural fault rocks. Some of these gels may form by comminution and hydrolization of silica-rich wall rocks, as has been observed in high-velocity experiments (Corona Fault). Others may form by depressurization and boiling of aqueous fluids, probably during fault valving (Olive Fault). Silica saturated hydrothermal fluids released during faulting may contribute in some cases (Dixie Valley Fault). Regardless of the mechanism of gel formation, the dramatic rheological weakening observed in friction experiments may be important if a continuous layer of gel is formed during earthquake slip.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2012
- Bibcode:
- 2012AGUFM.T13E2654R
- Keywords:
-
- 8030 STRUCTURAL GEOLOGY / Microstructures;
- 8045 STRUCTURAL GEOLOGY / Role of fluids;
- 8099 STRUCTURAL GEOLOGY / General or miscellaneous;
- 8163 TECTONOPHYSICS / Rheology and friction of fault zones