Gemini near-infrared observations of Europa's Hydrated Surface Materials
Abstract
Europa is a highly dynamic icy moon of Jupiter. It is thought the moon harbors a subsurface ocean, with the potential to sustain life, with Europa being a key target of ESA's forthcoming Jupiter Icy Moons Orbiter (JUICE) mission. However, much is not known concerning the chemistry of the subsurface ocean. The surface is dominated by water ice, with a hydrated non-ice material component providing the distinctive albedo contrasts seen at visible and near-infrared wavelengths. These non-ice materials are concentrated at disrupted surface regions, providing a diagnostic probe for the chemistry and characteristics of the liquid ocean beneath. Leading but potentially competing theories on the composition of these hydrated non-ice materials suggest either sulfuric acid-water mixtures (Carlson et al., 1999) or hydrated magnesium/sodium salts (McCord et al., 1999). Recent reanalysis of Galileo-NIMS observations suggest a mixture of both - hydrated salts are present at all longitudes but the sulfuric acid hydrates are localized on the trailing side. We present preliminary analysis of new ground-based Gemini disk-resolved spectroscopy of Europa using the Near-Infrared Integrated Field Spectrometer (NIFS), taken in late 2011, at H (1.49 - 1.80 μm) and K bands (1.99 - 2.40 μm) with spectral resolving powers of ~ 5300. At these NIR wavelengths, with spectral resolution much better than Galileo-NIMS, the spectral absorption and continuum characteristics of these ice and non-ice materials can be separated out. In addition, the spatial resolution potentially allows identification of localized materials whose signature would be diluted in disk-integrated spectra. These observations of the trailing hemisphere use Altair adaptive optics to achieve spatial resolutions of 0.1" (~310 km per pixel) or better, potentially leading to better identification of the non-ice materials and their spatial distributions. References Carlson, R.W., R.E. Johnson, and M.S. Anderson 1999. Sulfuric acid on Europa and the radiolytic sulfur cycle. Science 286, 97-99. McCord, T. et al. 1999. Hydrated salt minerals on Europa's surface from the Galileo Near- Infrared Mapping Spectrometer (NIMS) investigation. J. Geophys. Res. 104, 11827
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2012
- Bibcode:
- 2012AGUFM.P51A2004T
- Keywords:
-
- 6221 PLANETARY SCIENCES: SOLAR SYSTEM OBJECTS / Europa