Monitoring soil-vegetation interactions using non-invasive geophysical techniques
Abstract
The understanding of soil-vegetation-atmosphere interactions is of utmost importance in the solution of a number of hydrological questions and practical issues, including flood control, agricultural best practice, slope stability and impacts of climatic changes. Geophysical time-lapse monitoring can greatly contribute to the understanding of these interactions particularly for its capability to map in space and time the effects of vegetation on soil moisture content. In this work we present the results of two case studies showing the potential of hydro-geophysics in this context. The first example refers to the long term monitoring of the soil static and dynamic characteristics in an experimental site located in Sardinia (Italy). The main objective of this study is to understand the effects of soil - water - plants interactions on soil water balance. A combination of time-lapse electromagnetic induction (EMI) monitoring over wide areas and localized irrigation tests monitored by electrical resistivity tomography (ERT) and TDR soil moisture measurements is here used, in order to achieve quantitative field-scale estimates of moisture content from topsoil layer. Natural gamma-ray emission mapping, texture analysis and laboratory calibration of an electrical constitutive relationship on soil samples complete the dataset. We therefore observed that the growth of vegetation, with the associated below ground allocation of biomass, has a significant impact on the soil moisture dynamics. In particular vegetation extracts a large amount of water from the soil in the hot season, but it also reduces evaporation by shadowing the soil surface. In addition, vegetation enhances the soil wetting process as the root system facilitates water infiltration, thus creating a positive feedback system. The second example regards the time-lapse monitoring of soil moisture content in an apple orchard located in the Alpine region of Northern Italy (Trento). A three-dimensional cross-hole ERT setup was created using four small-scale boreholes and a 2D array of surface electrodes. The soil response to irrigation and evapo-transpiration evidences the location of tree roots, including the influence of irrigation patterns on the root growth, and their efficiency at removing soil moisture.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2012
- Bibcode:
- 2012AGUFM.H33A1286P
- Keywords:
-
- 1835 HYDROLOGY / Hydrogeophysics;
- 1865 HYDROLOGY / Soils