Bottom-Left Placement Theorem for Rectangle Packing
Abstract
This paper proves a bottom-left placement theorem for the rectangle packing problem, stating that if it is possible to orthogonally place n arbitrarily given rectangles into a rectangular container without overlapping, then we can achieve a feasible packing by successively placing a rectangle onto a bottom-left corner in the container. This theorem shows that even for the real-parameter rectangle packing problem, we can solve it after finite times of bottom-left placement actions. Based on this theorem, we might develop efficient heuristic algorithms for solving the rectangle packing problem.
- Publication:
-
arXiv e-prints
- Pub Date:
- July 2011
- DOI:
- 10.48550/arXiv.1107.4463
- arXiv:
- arXiv:1107.4463
- Bibcode:
- 2011arXiv1107.4463H
- Keywords:
-
- Computer Science - Discrete Mathematics;
- Computer Science - Computational Geometry;
- Computer Science - Data Structures and Algorithms