On the Demailly-Semple jet bundles of hypersurfaces in $\CP^3$
Abstract
Let $X$ be a smooth hypersurface of degree $d$ in $\CP^3$. By totally algebraic calculations, we prove that on the third Demailly-Semple jet bundle $X_3$ of $X$, the bundle $\ocal_{X_3}(1)$ is big for $d\geq 11$, and that on the fourth Demailly-Semple jet bundle $X_4$ of $X$, the bundle $\ocal_{X_4}(1)$ is big for $d\geq 10$, improving a recent result of Diverio.
- Publication:
-
arXiv e-prints
- Pub Date:
- July 2011
- DOI:
- 10.48550/arXiv.1107.4128
- arXiv:
- arXiv:1107.4128
- Bibcode:
- 2011arXiv1107.4128S
- Keywords:
-
- Mathematics - Algebraic Geometry;
- Mathematics - Complex Variables
- E-Print:
- 19 pages