Auslander-Reiten translations in monomorphism categories
Abstract
We generalize Ringel and Schmidmeier's theory on the Auslander-Reiten translation of the submodule category $\mathcal S_2(A)$ to the monomorphism category $\mathcal S_n(A)$. As in the case of $n=2$, $\mathcal S_n(A)$ has Auslander-Reiten sequences, and the Auslander-Reiten translation $\tau_{\mathcal{S}}$ of $\mathcal S_n(A)$ can be explicitly formulated via $\tau$ of $A$-mod. Furthermore, if $A$ is a selfinjective algebra, we study the periodicity of $\tau_{\mathcal{S}}$ on the objects of $\mathcal S_n(A)$, and of the Serre functor $F_{\mathcal S}$ on the objects of the stable monomorphism category $\underline{\mathcal{S}_n(A)}$. In particular, $\tau_{\mathcal S}^{2m(n+1)}X\cong X$ for $X\in\mathcal{S}_n(\A(m, t))$; and $F_{\mathcal S}^{m(n+1)}X\cong X$ for $X\in\underline{\mathcal{S}_n(\A(m, t))}$, where $\A(m, t), \ m\ge1, \ t\ge2,$ are the selfinjective Nakayama algebras.
- Publication:
-
arXiv e-prints
- Pub Date:
- January 2011
- DOI:
- 10.48550/arXiv.1101.4113
- arXiv:
- arXiv:1101.4113
- Bibcode:
- 2011arXiv1101.4113X
- Keywords:
-
- Mathematics - Representation Theory;
- 16G10;
- 16G70;
- 18E30
- E-Print:
- 33 pages, 1 figures