Maximum gravitational-wave energy emissible in magnetar flares
Abstract
Recent searches of gravitational-wave data raise the question of what maximum gravitational-wave energies could be emitted during gamma-ray flares of highly magnetized neutron stars (magnetars). The highest energies (∼1049erg) predicted so far come from a model [K. Ioka, Mon. Not. R. Astron. Soc.MNRAA40035-8711 327, 639 (2001), http://adsabs.harvard.edu/abs/2001MNRAS.327..639I] in which the internal magnetic field of a magnetar experiences a global reconfiguration, changing the hydromagnetic equilibrium structure of the star and tapping the gravitational potential energy without changing the magnetic potential energy. The largest energies in this model assume very special conditions, including a large change in moment of inertia (which was observed in at most one flare), a very high internal magnetic field, and a very soft equation of state. Here we show that energies of 1048-1049erg are possible under more generic conditions by tapping the magnetic energy, and we note that similar energies may also be available through cracking of exotic solid cores. Current observational limits on gravitational waves from magnetar fundamental modes are just reaching these energies and will beat them in the era of advanced interferometers.
- Publication:
-
Physical Review D
- Pub Date:
- May 2011
- DOI:
- 10.1103/PhysRevD.83.104014
- arXiv:
- arXiv:1102.3421
- Bibcode:
- 2011PhRvD..83j4014C
- Keywords:
-
- 04.30.Db;
- 04.30.Tv;
- 97.60.Jd;
- 95.85.Sz;
- Wave generation and sources;
- Gravitational-wave astrophysics;
- Neutron stars;
- Gravitational radiation magnetic fields and other observations;
- General Relativity and Quantum Cosmology;
- Astrophysics - High Energy Astrophysical Phenomena
- E-Print:
- 16 pages, 5 figures, 1 table