SCATHA measurements of electron lifetimes at 5 < L < 8
Abstract
It is well known that the outer radiation belt is highly dynamic due to an imbalance between acceleration and loss processes, particularly during enhanced magnetic activity. Many loss mechanisms have been suggested since the beginning of space age, such as Coulomb collisions with atmospheric constituents, lightning generated whistler waves, man-made VLF transmitter signals, plasmaspheric hiss, chorus waves, electromagnetic ion cyclotron waves, and magnetopause shadowing. The electron lifetime is associated with loss processes, and is important in determination of pitch angle diffusion rates. Electron lifetimes have been studied by many satellites, such as SAMPEX, HEO, GOES, POLAR, Akebono, CRRES, SAC-C, DEMETER, and etc. We will reanalyze an old dataset from Spacecraft Charging AT High Altitudes (SCATHA) to determine the electron lifetime at 5 < L < 8. SCATHA was a NASA/Air Force satellite launched in early 1979 and the mission lasted approximately 10 year. It was placed in a near-synchronous, near-equatorial earth orbit with an inclination of 8.5 degree. The SC3 spectrometer measured the fluxes and pitch-angle distributions of the energetic electrons in the energy range 50 keV to 5 MeV. Although only a small fraction of data were fully analyzed, we take advantage of a relatively large dataset to systematically determine the decay timescales as function of L-shell, electron energy, and pitch angle during magnetically disturbed periods. Initial results indicate that the electron lifetime decrease with increasing L. In addition, the lifetime increases with increasing electron energy at L < 6.5, especially for low energy channels (0.06-0.45 MeV). We will also compare our results with previous publications.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2011
- Bibcode:
- 2011AGUFMSM31C..07S
- Keywords:
-
- 7859 SPACE PLASMA PHYSICS / Transport processes;
- 7984 SPACE WEATHER / Space radiation environment