MoMar-Demo at Lucky Strike. A near-real time multidisciplinary observatory of hydrothermal processes and ecosystems at the Mid-Atlantic Ridge
Abstract
The MoMAR "Monitoring the Mid-Atlantic Ridge" project was initiated by InterRidge in 1998 to study the environmental instability resulting from active mid-ocean-ridge processes at hydrothermal vent fields south of the Azores. It then developped into a component of the ESONET (European Seafloor Observatory Network) and EMSO (European Multidisciplinary Subsea Observatory) programs, which coordinate eulerian observatory initiatives in the seas around Europe. MoMAR experiments have started in 2006 and address two main questions : What are the feedbacks between volcanism, deformation, seismicity, and hydrothermalism at a slow spreading mid-ocean ridge? and How does the hydrothermal ecosystem couple with these sub-seabed processes? The MoMAR-Demo project started in 2010 with partial support from ESONET. It has been implemented so far by 2 cruises of the RV Pourquoi Pas ? during which we successfully deployed (in 2010), and upgraded (in 2011) a near-realtime buoyed observatory system. The system comprises two Sea Monitoring Nodes (SeaMoN) at the seafloor, which are acoustically linked to a surface relay buoy (BoRel), ensuring satellite communication to a land base station in Brest (France). One SeaMoN node connects to a 3-components seismometer and an hydrophone for seismic event detection, and two pressure probes for geodetic measurements, and the other SeaMoN node connects to a video camera, a dissolved-iron analyzer, and an optode (oxygen and temperature probe) for ecological time studies. The BOREL transmission buoy is equiped with GPS (geodetic experiment and buoy location) and meteo station. Data and/or status signals from these sensors are transmitted every 6 hours, and put on line in compliance with the ESONET-EMSO data policy (temporary access through http://www.ifremer.fr/WC2en/allEulerianNetworks). The MoMAR-Demo system also allows for interactive connections and changes of data transmission rates on demand. It is nested in arrays of autonomous sensors (OBSs, pressure probes, tiltmeter, temperature probes in selected smokers, currentmeters and temperature probes in the water column), and colonization devices for time-integrated faunal studies. In this presentation we will outline the latest results of this prototype sub-sea multidisciplinary observatory system. The MoMAR-Demo Scientific Party : Aron Michael, Aumont Virginie, Baillard Christian, Ballu Valérie, Barreyre Thibaut, Blandin Jérôme, Blin Alexandre, Boulart Cédric, Cannat Mathilde, Carval Thierry, Castillo Alain, Chavagnac Valérie, Coail Jean Yves, Colaço Ana, Corela Carlos, Courrier Christophe, Crawford Wayne, Cuvelier Daphné, Daniel Romuald, Dausse Denis, Escartin Javier, Fabrice Fontaine, Gabsi Taoufik, Gayet Nicolas, Guyader Gérard, Lallier François, Lecomte Benoit, Legrand Julien, Lino Silva, Miranda Miguel, Mitard Emmelyne, Pichavant Pascal, Pot Olivier, Reverdin Gilles, Rommevaux Céline, Sarradin Pierre Marie, Sarrazin Jozée, Tanguy Virginie, Villinger Heinrich, Zbinden Magali
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2011
- Bibcode:
- 2011AGUFMOS22A..05C
- Keywords:
-
- 3035 MARINE GEOLOGY AND GEOPHYSICS / Midocean ridge processes;
- 3050 MARINE GEOLOGY AND GEOPHYSICS / Ocean observatories and experiments;
- 4815 OCEANOGRAPHY: BIOLOGICAL AND CHEMICAL / Ecosystems;
- structure;
- dynamics;
- and modeling;
- 4832 OCEANOGRAPHY: BIOLOGICAL AND CHEMICAL / Hydrothermal systems