Biogeochemical Indicators in High- and Low-Arctic Marine and Terrestrial Avian Community Changes: Comparative Isotopic (13C, 15N, and 34S) Studies in Alaska and Greenland
Abstract
Understanding the complex dynamics of environmental change in northern latitudes is of paramount importance today, given documented rapid shifts in sea ice, plant phenology, temperatures, deglaciation, and habitat fidelity. This knowledge is particularly critical for Arctic avian communities, which are integral components by which biological teleconnections are maintained between the mid and northern latitudes. Furthermore, Arctic birds are fundamental to Native subsistence lifestyles and a focus for conservation activities. Avian communities of marine and terrestrial Arctic environments represent a broad spectrum of trophic levels, from herbivores (eg., geese Chen spp.), planktivores (eg., auklets Aethia spp.), and insectivores (eg., passerines: Wheatears Oenanthe spp., Longspurs Calcarius spp.), to predators of marine invertebrates (eg., eiders Somateria spp.), nearshore and offshore fish (eg., cormorants Phalacrocorax spp, puffins Fratercula spp.), even other bird species (eg., gulls Larus spp., falcons Peregrinus spp.). This diversity of trophic interconnections is an integral factor in the dynamics of Arctic ecosystem ecology, and they are key indicators for the strength and trajectories of change. We are especially interested in their feeding ecology, using stable isotope-diet relations to examine historical diets and to predict future feeding ecology by this range of species. Since 2009, we have been studying the foodweb ecology using stable isotopes (δ13C, δ15N, δ34S) of contemporaneous coastal and marine bird communities in High Arctic (Northwest Greenland) and Low Arctic (western Aleutian Islands, AK). We are quantifying the isotopic values of blood, organ tissues, and feathers, and have carried out comparisons between native and lipid-extracted samples. Although geographically distant, these communities comprise similar taxonomic and ecological congeners, including several species common to both (eg., Common Eider, Black-legged Kittiwake, Northern Fulmar). Generally, High Arctic species have tissues that are more enriched in δ15N compared to their Low Arctic counterparts, but δ13C values are similar in both regions. These patterns follow observed regional differences in Arctic isoscapes, and are probably related to isotopic variations in food rather than trophic level differentiation. Both Low- and High-Arctic bird communities show decadal-period shifts in stable isotope profiles, based on prior published results and previously collected specimens. For example, Aleutian birds feeding in upper trophic levels have tissues are more enriched in both δ13C and δ15N compared to specimens collected in 2000-2001. We anticipate broadening the time depth of this initial study using museum archival and archeological material, as well as continuing studies in 2013 and 2014.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2011
- Bibcode:
- 2011AGUFMGC51F1079C
- Keywords:
-
- 0439 BIOGEOSCIENCES / Ecosystems;
- structure and dynamics;
- 0460 BIOGEOSCIENCES / Marine systems;
- 0491 BIOGEOSCIENCES / Food webs and trophodynamics;
- 1630 GLOBAL CHANGE / Impacts of global change