Insights Into the Workings of Rhyolitic Explosive Eruptions and Their Magmatic Sources
Abstract
The nature, role and significance of rhyolitic volcanism and its associated crustal magmatism have been widely recognised and documented over the past ~50 years. The products of such volcanism include the largest Quaternary eruptions on Earth, and these 'supereruptions' represent the largest terrestrial long-term hazard to humanity as well as reflecting resource-rich magmatic systems. Only three rhyolitic eruptions of any size have occurred over the last 100 years (Novarupta, Tuluman, Chaiten) and so patterns of rhyolitic volcanism have been inferred almost entirely from the products of past events. Numerous models for the dynamics of explosive activity have been generated from the resulting deposits, but many questions remain about the eruptions and their parental magma bodies. Central to understanding how rhyolitic systems operate is two suites of questions. First, what are the timescales of large explosive eruptions? Are they short-lived catastrophic events ('hours or days') or can they be prolonged over years to decades? How and why do large eruptions stop and start? Prehistoric large eruptions seem to show a great variety of timings, varying from days (e.g. Bishop Tuff) through months (e.g. Oruanui) to a decade or more (e.g. Huckleberry Ridge Tuff), with periods of high output alternating with hiatuses of minutes to years. Eruption rates, where they can be assessed, do not necessarily scale with the volume of the deposit. Large eruptions may be internally modulated by external (tectonic) forces, implying that eruption styles and products may be influenced by something that leaves no geological presence. Tectonic processes may control whether the evacuation of more than one magma body occurs, or trigger pairings of independent eruptions. The second suite of questions centres on the time periods over which the bodies of erupted magma accumulate and how they are assembled. Do tens to hundreds to thousands of cubic kilometres of eruptible magma collect over a time period proportional to the size of the body, or do other factors play a role? How completely are chambers emptied during eruptions? The value of zircon crystallization ages in measuring the timescales of silicic magma generation and accumulation is not in doubt. There are many ambiguities, however, in how such data are treated and interpreted, in part depending on the detail of the geological record and in part related to the uncertainties associated with individual age estimates. Magma bodies can have very short accumulation times which are different from the timescales implied by crystallization ages. Large bodies of melt-dominant magma may be thoroughly mixed, have floors rigid enough to permit flow of mafic influxes across them, and then be effectively totally evacuated during eruption. I will present an overview of ideas and information from combined field and laboratory case studies which contribute towards addressing the nature and dynamics of large silicic systems.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2011
- Bibcode:
- 2011AGUFM.V42A..01W
- Keywords:
-
- 3618 MINERALOGY AND PETROLOGY / Magma chamber processes;
- 8428 VOLCANOLOGY / Explosive volcanism;
- 8439 VOLCANOLOGY / Physics and chemistry of magma bodies;
- 8486 VOLCANOLOGY / Field relationships