Stratigraphy, paleoenvironment and emplacement mechanisms of the Koko fissure craters, O'ahu, Hawai'i
Abstract
The Koko fissure craters are aligned and nested basanitic tuff cones and rings at the SE corner of O'ahu, Hawai'i. There are no published studies of their stratigraphy, emplacement mechanisms or depositional paleoenvironments. This study focuses on a tuff cone complex (Koko Crater) and a younger adjacent nested tuff ring (Hanauma Bay). A detailed stratigraphy with logged sections for both Koko Crater and the Hanauma Bay craters are presented and discussed. Koko Crater is dominated by wet fallout deposits on steep proximal slopes, commonly resedimented by hot (vesiculated) and cold (unvesiculated) debris flows, slumps and slides, but with an increasing percentage of wet (low temperature) low concentration PDC deposits preserved in the shallowly-dipping flanking apron deposits, and in the uppermost proximal deposits. At least two earlier cone or ring rims are preserved along its southern margin. The deposits of Hanauma Bay overlie the Koko deposits and are dominated by a mix of wet low concentration PDC, wet fallout and synchronous PDC, and fallout deposits in proximal settings, and by low concentration, probably drier, PDC deposits in more distal settings. The Hanauma Bay rings were emplaced before the Koko Crater tephra was consolidated, as steep-sided rills incised into Koko tephra are locally filled with tephra of mixed Koko and Hanauma sources. The onset of Hanauma Bay eruptions is marked by a horizon that is very rich in rounded coral sand clasts. Discontinuous horizons and lenses of coral block fallout are also very common in the Hanauma tephra. Coral sand is absent and coral blocks are much rarer in the Koko tephra. These observations, and probably also the dominance of wet fallout at Koko, imply that Koko was erupted in deeper water than the nearshore coral beach environment of the Hanauma rings. A faster rate of water recharge into the conduit in deeper open water is probably the most important factor in the generation of a cone rather than a ring at this locality.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2011
- Bibcode:
- 2011AGUFM.V31E2572S
- Keywords:
-
- 8404 VOLCANOLOGY / Volcanoclastic deposits;
- 8414 VOLCANOLOGY / Eruption mechanisms and flow emplacement;
- 8427 VOLCANOLOGY / Subaqueous volcanism