Verification of the Velocity Structure in Mexico Basin Using the H/V Spectral Ratio of Microtremors
Abstract
The authors have been proposing a new theory to calculate the Horizontal-to-Vertical (H/V) spectral ratio of microtremors assuming that the wave field is completely diffuse and have attempted to apply the theory to understand the observed microtremor data. It is anticipated that this new theory can be applied to detect the subsurface velocity structure beneath urban area. Precise information about the subsurface velocity structure is essential for predicting strong ground motion accurately, which is necessary to mitigate seismic disaster. Mexico basin, who witnessed severe damage during the 1985 Michoacán Earthquake (Ms 8.1) several hundreds of kilometers away from the source region, is an interesting location in which the reassessment of soil properties is urgent. Because of subsidence, having improved estimates of properties is mandatory. In order to estimate possible changes in the velocity structure in the Mexico basin, we measured microtremors at strong motion observation sites in Mexico City. At those sites, information about the velocity profiles are available. Using the obtained data, we derive observed H/V spectral ratio and compare it with the theoretical H/V spectral ratio to gauge the goodness of our new theory. First we compared the observed H/V spectral ratios for five stations to see the diverse characteristics of this measurement. Then we compared the observed H/V spectral ratios with the theoretical predictions to confirm our theory. We assumed the velocity model of previous surveys at the strong motions observation sites as an initial model. We were able to closely fit both the peak frequency and amplitude of the observed H/V spectral ratio, by the theoretical H/V spectral ratio calculated by our new method. These results show that we have a good initial model. However, the theoretical estimates need some improvement to perfectly fit the observed H/V spectral ratio. This may be an indication that the initial model needs some adjustments. We explore how to improve the velocity model based on the comparison between observations and theory.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2011
- Bibcode:
- 2011AGUFM.S23A2216M
- Keywords:
-
- 7200 SEISMOLOGY;
- 7212 SEISMOLOGY / Earthquake ground motions and engineering seismology;
- 7260 SEISMOLOGY / Theory