Highway 61 Revisited: Finding Drivers for Hypoxia in Aquatic Systems in the Mississippi Alluvial Plain
Abstract
Streams and lakes in the intensively cultivated Mississippi River alluvial plain frequently experience periods of hypoxia that are evidence of ecological stress. Although hydrologic perturbations and sediments and nutrients derived from nonpoint sources are likely drivers of these conditions, the most efficient pathway for obtaining partial ecological recovery (e.g., N load reduction or P load reduction or flow augmentation or erosion control) is not clear. To gain deeper understanding of these systems, three similar ~20 km2 watersheds in northwestern Mississippi were selected for study and instrumented for collection of hydrologic and water quality data in 2011. Aquatic systems within each watershed consisted of shallow natural lakes embedded in networks of sporadically flowing ditches, natural channels and wetlands, with hydrology strongly impacted by irrigation withdrawals from groundwater and return flows to surface water bodies. Waters were usually turbid, with mean Secchi disk readings 10-15 cm and mean suspended solids concentrations 200-600 mg/L. Strong diurnal fluctuations in dissolved oxygen concentration (DO) occurred even in the wetter, cooler winter months, with up to 50% of daily means below state standards (5 mg/L). The average diurnal range (daily max-daily min) in DO varied from 0.9 to 2.5 mg/L for lakes and from 1.7 to 6.0 mg/L for channels. Attendant extreme diurnal variations in temperature and pH were also observed. Observations of chlorophyll a concentrations, water column phytoplankton, and attached algae indicate the importance of algal photosynthesis and respiration to DO levels, but these processes are limited by light availability and N and P concentrations in a complex fashion. Light levels are governed by channel width, water depth and turbidity, which is due to suspended sediment and algae. Preliminary nutrient limitation studies showed both N and P limit algal growth, and microbial production and respiration. N and N+P co-limitation dominated over P limitation. Microbial nutrient limitation differed by habitat type with nutrient stimulation greater in channel habitats than in lakes. Indeed, all types of temporal variation were inversely related to water depth and volume, with lakes manifesting more stable chemistry than shallower channels. These data collections are planned for five more years, with intentional manipulation of one watershed during year three.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2011
- Bibcode:
- 2011AGUFM.H44A..02S
- Keywords:
-
- 1834 HYDROLOGY / Human impacts;
- 1845 HYDROLOGY / Limnology;
- 1851 HYDROLOGY / Plant ecology;
- 1871 HYDROLOGY / Surface water quality