Measurements of aerosol distributions and properties from Airborne High Spectral Resolution Lidar and DRAGON during the DISCOVER-AQ California Experiment (Invited)
Abstract
The new NASA Langley Research Center airborne High Spectral Resolution Lidar-2 (HSRL-2) was deployed from the NASA Langley King Air aircraft for the DISCOVER-AQ (Deriving Information on Surface Conditions from COlumn and VERtically Resolved Observations Relevant to Air Quality) and DRAGON experiments that occurred over the San Joaquin Valley during January and February, 2013. The HSRL-2, which is the world's first airborne multiwavelength HSRL, measures aerosol extinction at 355 and 532 nm via the HSRL technique, as well as aerosol backscatter and depolarization at 355, 532, and 1064 nm. Additional HSRL-2 data products include aerosol type, mixed layer depth, and range-resolved aerosol microphysical parameters (e.g., effective radius, index of refraction, single scatter albedo, and concentration). During this mission, the King Air flights and HSRL-2 measurements were acquired over the DRAGON network and long-term AERONET sites and were closely coordinated with flights of the NASA P-3 aircraft that carried a suite of in situ aerosol instruments. In this presentation, we discuss how the HSRL-2 and DRAGON observations have been used to examine aerosol optical and microphysical properties as well as spatial and temporal variability. On some days, both HSRL-2 and DRAGON measurements indicated that coarse mode dust contributed a significant fraction of the aerosol optical thickness (AOT); in these cases, HSRL-2 measurements indicated that this depolarizing layer was located at the top of the boundary layer. We discuss differences in the aerosol properties between two episodes of high surface PM2.5 concentrations as revealed by the HSRL-2 and DRAGON measurements. Both the HSRL-2 and DRAGON measurements reveal considerable day-to-day spatial variability in the aerosol distributions across the valley. The HSRL-2 measurements also show variability in the daily evolution of the vertical distribution of aerosols.
- Publication:
-
AGU Fall Meeting Abstracts
- Pub Date:
- December 2011
- Bibcode:
- 2011AGUFM.A31K..02F
- Keywords:
-
- 1620 GLOBAL CHANGE / Climate dynamics;
- 3349 ATMOSPHERIC PROCESSES / Polar meteorology;
- 3355 ATMOSPHERIC PROCESSES / Regional modeling;
- 0305 ATMOSPHERIC COMPOSITION AND STRUCTURE Aerosols and particles;
- 3360 ATMOSPHERIC PROCESSES Remote sensing;
- 3311 ATMOSPHERIC PROCESSES Clouds and aerosols