Bubble Dynamics in a Two-Phase Medium
Abstract
The spherical dynamics of a bubble in a compressible liquid has been studied extensively since the early work of Gilmore. Numerical codes to study the behavior, including when large non-spherical deformations are involved, have since been developed and have been shown to be accurate. The situation is however different and common knowledge less advanced when the compressibility of the medium surrounding the bubble is provided mainly by the presence of a bubbly mixture. In one of the present works being carried out at DYNAFLOW, INC., the dynamics of a primary relatively large bubble in a water mixture including very fine bubbles is being investigated experimentally and the results are being provided to several parallel on-going analytical and numerical approaches. The main/primary bubble is produced by an underwater spark discharge from two concentric electrodes placed in the bubbly medium, which is generated using electrolysis. A grid of thin perpendicular wires is used to generate bubble distributions of varying intensities. The size of the main bubble is controlled by the discharge voltage, the capacitors size, and the pressure imposed in the container. The size and concentration of the fine bubbles can be controlled by the electrolysis voltage, the length, diameter, and type of the wires, and also by the pressure imposed in the container. This enables parametric study of the factors controlling the dynamics of the primary bubble and development of relationships between the bubble characteristic quantities such as maximum bubble radius and bubble period and the characteristics of the surrounding two-phase medium: micro bubble sizes and void fraction.
- Publication:
-
arXiv e-prints
- Pub Date:
- October 2010
- DOI:
- arXiv:
- arXiv:1010.5473
- Bibcode:
- 2010arXiv1010.5473J
- Keywords:
-
- Physics - Fluid Dynamics