Text Classification using the Concept of Association Rule of Data Mining
Abstract
As the amount of online text increases, the demand for text classification to aid the analysis and management of text is increasing. Text is cheap, but information, in the form of knowing what classes a text belongs to, is expensive. Automatic classification of text can provide this information at low cost, but the classifiers themselves must be built with expensive human effort, or trained from texts which have themselves been manually classified. In this paper we will discuss a procedure of classifying text using the concept of association rule of data mining. Association rule mining technique has been used to derive feature set from pre-classified text documents. Naive Bayes classifier is then used on derived features for final classification.
- Publication:
-
arXiv e-prints
- Pub Date:
- September 2010
- DOI:
- 10.48550/arXiv.1009.4582
- arXiv:
- arXiv:1009.4582
- Bibcode:
- 2010arXiv1009.4582M
- Keywords:
-
- Computer Science - Machine Learning;
- Computer Science - Databases;
- Computer Science - Information Retrieval
- E-Print:
- 8 Pages, International Conference