A q-analogue of some binomial coefficient identities of Y. Sun
Abstract
We give a $q$-analogue of some binomial coefficient identities of Y. Sun [Electron. J. Combin. 17 (2010), #N20] as follows: {align*} \sum_{k=0}^{\lfloor n/2\rfloor}{m+k\brack k}_{q^2}{m+1\brack n-2k}_{q} q^{n-2k\choose 2} &={m+n\brack n}_{q}, \sum_{k=0}^{\lfloor n/4\rfloor}{m+k\brack k}_{q^4}{m+1\brack n-4k}_{q} q^{n-4k\choose 2} &=\sum_{k=0}^{\lfloor n/2\rfloor}(-1)^k{m+k\brack k}_{q^2}{m+n-2k\brack n-2k}_{q}, {align*} where ${n\brack k}_q$ stands for the $q$-binomial coefficient. We provide two proofs, one of which is combinatorial via partitions.
- Publication:
-
arXiv e-prints
- Pub Date:
- August 2010
- DOI:
- 10.48550/arXiv.1008.1469
- arXiv:
- arXiv:1008.1469
- Bibcode:
- 2010arXiv1008.1469G
- Keywords:
-
- Mathematics - Combinatorics;
- 05A10;
- 05A17
- E-Print:
- 6 pages, final version