Relations de récurrence linéaires, primitivité et loi de Benford
Abstract
We prove that many sequences of positive numbers $(a_n)$ defined by finite linear difference equations $a_{n+k}=c_{k-1}a_{n+k-1}+...+c_0a_n$ with suitable non negative reals coefficients $c_i$ satisfy Bendford's Law on the first digit in many bases $b>2$. Our techniques rely on Perron-Frobenius theory via the companion matrix of the characteristic polynomial of the defining equation.
- Publication:
-
arXiv e-prints
- Pub Date:
- July 2010
- DOI:
- arXiv:
- arXiv:1007.5349
- Bibcode:
- 2010arXiv1007.5349D
- Keywords:
-
- Mathematics - Dynamical Systems;
- Mathematics - Rings and Algebras;
- 11A99
- E-Print:
- 12 pages