Asymptotic sharpness of a Bernstein-type inequality for rational functions in H^{2}
Abstract
A Bernstein-type inequality in the standard Hardy space H^{2} of the unit disc \mathbb{D}=\{z\in\mathbb{C}:\,|z|<1\}, for rational functions in \mathbb{D} having at most n poles all outside of \frac{1}{r}\mathbb{D}, 0
- Publication:
-
arXiv e-prints
- Pub Date:
- March 2010
- DOI:
- 10.48550/arXiv.1003.0297
- arXiv:
- arXiv:1003.0297
- Bibcode:
- 2010arXiv1003.0297Z
- Keywords:
-
- Mathematics - Functional Analysis