On Exponential Sums, Nowton identities and Dickson Polynomials over Finite Fields
Abstract
Let $\mathbb{F}_{q}$ be a finite field, $\mathbb{F}_{q^s}$ be an extension of $\mathbb{F}_q$, let $f(x)\in \mathbb{F}_q[x]$ be a polynomial of degree $n$ with $\gcd(n,q)=1$. We present a recursive formula for evaluating the exponential sum $\sum_{c\in \mathbb{F}_{q^s}}\chi^{(s)}(f(x))$. Let $a$ and $b$ be two elements in $\mathbb{F}_q$ with $a\neq 0$, $u$ be a positive integer. We obtain an estimate for the exponential sum $\sum_{c\in \mathbb{F}^*_{q^s}}\chi^{(s)}(ac^u+bc^{-1})$, where $\chi^{(s)}$ is the lifting of an additive character $\chi$ of $\mathbb{F}_q$. Some properties of the sequences constructed from these exponential sums are provided also.
- Publication:
-
arXiv e-prints
- Pub Date:
- January 2010
- DOI:
- 10.48550/arXiv.1001.4305
- arXiv:
- arXiv:1001.4305
- Bibcode:
- 2010arXiv1001.4305C
- Keywords:
-
- Computer Science - Information Theory;
- 11T23
- E-Print:
- 18 pages