HAWCPol: a first-generation far-infrared polarimeter for SOFIA
Abstract
We describe our ongoing project to build a far-infrared polarimeter for the HAWC instrument on SOFIA. Far-IR polarimetry reveals unique information about magnetic fields in dusty molecular clouds and is an important tool for understanding star formation and cloud evolution. SOFIA provides flexible access to the infrared as well as good sensitivity to and angular resolution of continuum emission from molecular clouds. We are making progress toward outfitting HAWC, a first-generation SOFIA camera, with a four-band polarimeter covering 50 to 220 microns wavelength. We have chosen a conservative design which uses quartz half-wave plates continuously rotating at ~0.5 Hz, ball bearing suspensions, fixed wire-grid polarizers, and cryogenic motors. Design challenges are to fit the polarimeter into a volume that did not originally envision one, to minimize the heating of the cryogenic optics, and to produce negligible interference in the detector system. Here we describe the performance of the polarimeter measured at cryogenic temperature as well as the basic method we intend for data analysis. We are on track for delivering this instrument early in the operating lifetime of SOFIA.
- Publication:
-
Ground-based and Airborne Instrumentation for Astronomy III
- Pub Date:
- July 2010
- DOI:
- Bibcode:
- 2010SPIE.7735E..6HD