Achieving Better Than 1 Minute Accuracy in the Heliocentric and Barycentric Julian Dates
Abstract
As the quality and quantity of astrophysical data continue to improve, the precision with which certain astrophysical events can be timed becomes limited not by the data themselves, but by the manner, standard, and uniformity with which time itself is referenced. While some areas of astronomy (most notably pulsar studies) have required absolute time stamps with precisions of considerably better than 1 minute for many decades, recently new areas have crossed into this regime. In particular, in the exoplanet community, we have found that the (typically unspecified) time standards adopted by various groups can differ by as much as a minute. Left uncorrected, this ambiguity may be mistaken for transit timing variations and bias eccentricity measurements. We argue that, since the commonly-used Julian Date, as well as its heliocentric and barycentric counterparts, can be specified in several time standards, it is imperative that their time standards always be reported when accuracies of 1 minute are required. We summarize the rationale behind our recommendation to quote the site arrival time, in addition to using BJDTDB, the Barycentric Julian Date in the Barycentric Dynamical Time standard for any astrophysical event. The BJDTDB is the most practical absolute time stamp for extraterrestrial phenomena, and is ultimately limited by the properties of the target system. We compile a general summary of factors that must be considered in order to achieve timing precisions ranging from 15 minutes to 1 µs. Finally, we provide software tools that, in principal, allow one to calculate BJDTDB to a precision of 1 μs for any target from anywhere on Earth or from any spacecraft.
- Publication:
-
Publications of the Astronomical Society of the Pacific
- Pub Date:
- August 2010
- DOI:
- arXiv:
- arXiv:1005.4415
- Bibcode:
- 2010PASP..122..935E
- Keywords:
-
- Astrophysics - Instrumentation and Methods for Astrophysics
- E-Print:
- Online BJD_TDB calculator at http://astroutils.astronomy.ohio-state.edu/time/utc2bjd.html. PASP accepted, 11 pages, 6 figures, updated to match published version